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Abstract
Neuromorphic computing is becoming increasingly prominent as arti!cial
intelligence (AI) facilitates progressively seamless interaction between
humans and machines. The conventional von Neumann architecture and
complementary metal-oxide-semiconductor transistor scaling are unable
to meet the highly demanding computational density and energy ef!ciency
requirements of AI. Neuromorphic computing aims to address these chal-
lenges by using brain-like computing architectures and novel synaptic mem-
ories that coallocate information storage and computation, thereby enabling
low latency at high energy ef!ciency and high memory density. Though var-
ious emerging memory devices have been extensively studied to emulate the
functionality of biological synapses, there is currently nomaterial/device sys-
tem that encompasses both the needed metrics for high-performance neu-
romorphic computing and the required biocompatibility for potential body-
computer integration. In this review,we aim to equip the reader with general
design principles andmaterials requirements for realizing high-performance
organic neuromorphic devices. We use instructive examples from recent
literature to discuss each requirement, illustrating the challenges as well
as future research opportunities. Though organic devices still face many
challenges to become major players in neuromorphic computing, mostly
due to their lack of compliance with back-end-of-line processes required
for integration with digital logic, we propose that their biocompatibility and
mechanical conformability give them an advantage for creating adaptive
biointerfaces, brain-machine interfaces, and biology-inspired prosthetics.
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1. BACKGROUND
Device downscaling has long been themain approach tomeeting the increasing demands for high-
performance computing in silicon-based technologies. However, this approach is reaching practi-
cal limits as the von Neumann computer architecture (in which data are constantly transferred
between computing units and memory units) and complementary metal-oxide-semiconductor
(CMOS) transistor scaling are unable to meet the increasingly demanding requirements for faster
computing and larger memory density that are needed to handle the large data sets processed with
arti!cial intelligence applications. The execution of these tasks with minimal power consumption
has sparked a new era of research in computing systems, such as brain-like computing (1). The
brain has a largememory capacity and simultaneously executes amultitude of tasks (sensing, image
recognition, etc.) with much lower power consumption than conventional electronic systems. In
the simpli!ed picture, the brain works through a neural network in which signals are transmitted
from neuron to neuron as ion "uxes or electrical spikes (2).To emulate brain functionality in silico,
neuromorphic computers have been proposed that use emerging synaptic devices as a new com-
puting approach beyond traditional von Neumann computing and conventional semiconductor
devices.

To learn and remember (compute and store data) like the brain does, memristive devices (3)
have been thoroughly investigated owing to their ability to respond to electrical signals and main-
tain different conductance states for a long or short time. Such devices are sought after because,
in their simplest geometry (two terminal), they are the closest electronic analog to a biological
synapse.One of the most promising approaches is to use arrays of such memory devices to acceler-
ate arti!cial neural network (ANN) algorithms in hardware. This approach takes advantage of the
recent success of ANNs in self-driving automobiles and in performing tasks including natural lan-
guage and image processing, and !nancial calculations. In such an array, the conductance of each
memory device represents the synaptic weight used in software ANNs.Upon training, the conduc-
tance of the conducting material can be modulated via materials-dependent mechanisms: forma-
tion of a conductive !lament, charge trapping/detrapping, ion migration, or a reversible electro-
chemical reaction (4–6).This conductancemodulation emulates the activity of a biological synapse
in which an action or chemical potential induces signal transmission across the synaptic cleft (7).

To date, several demonstrations of memory devices have shown promising performance,
including mature technologies such as phase change memory (PCM) and resistive random-access
memory (ReRAM) (5, 6, 8). Since their demonstration by IBM nearly six decades ago (9, 10),
great progress has been achieved using these devices for neuromorphic computing. Several
materials, mostly inorganic, have been shown to (a) switch at high speed in response to small
potential pulses, thus operating with low power consumption (11); (b) learn and remember (6)
(i.e., conductance switching and state retention); and (c) be scalable to <100-nm dimensions
using conventional semiconductor foundry processes, which makes them attractive for commer-
cialization (12). However, from a materials standpoint, PCMs and ReRAMs are not ideal since
they suffer from inherently stochastic and asymmetric resistance switching that is detrimental
for ANN computing. In addition, scaling to large ANN arrays requires low operating currents
and low device-to-device variability, which remain some of the major bottlenecks for these
technologies. To date, there is no single material or device that successfully meets the entire set of
stringent neuromorphic device metrics (e.g., programming linearity, fast switching, low operating
current and voltage, low switching energy, high endurance, small footprint, low device-to-device
variability, integration compatibility with digital logic). The need to realize ef!cient synthetic
neural systems has led researchers to look beyond conventional materials and devices and explore
novel materials and switching mechanisms for neuromorphic computing.
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Organic electronic materials have attracted a great deal of attention after demonstrating some
of the resistance switching properties found in inorganic materials. Furthermore, organic mate-
rials have shown other features, such as biocompatibility, "exibility, and softness, that make them
appealing candidates for bioelectronics (13–15). Like inorganic materials, organic materials have
demonstrated synaptic behaviors of various kinds depending on the materials system: !lament
forming (16–18), charge trapping (19–21), redox active (22–26), and ion migration–based (27, 28)
memory devices. Though device demonstrations are being reported at an increasing rate, further
innovations in materials design, patterning techniques, and device architectures are still needed
to explore the full potential of organic electronic materials for neuromorphic computing. For ex-
ample, typically reported inorganic neuromorphic devices switch at ∼10–100-ns timescales and
can be scaled down to the ∼10–100-nm dimensions that are needed to realize high-density and
ef!cient synthetic neural systems. Simply put, organic neuromorphic devices are lagging behind
their inorganic counterparts in terms of technological maturity. While this brings major chal-
lenges, there are also promising research opportunities as it is still unclear whether fundamental
advantages that organic neuromorphics may exhibit are suf!cient to bridge this technological gap.

In this review, we !rst highlight the device requirements for high-performance neuromor-
phic computing and discuss how organic electronic materials compare to their inorganic coun-
terparts. We aim to provide materials and device considerations for readers that are interested in
exploring organic electronic materials for neuromorphic devices that can be competitive candi-
dates for inorganic systems. The discussion mainly focuses on organic materials functioning as
the (semi)conductive component of neuromorphic devices even though organic materials have
been studied in other device components, such as substrates and electrolytes. We focus on design
strategies for simultaneously meeting all of the device metrics rather than optimizing any single
parameter. Since neuromorphic device operationmechanisms have been discussed elsewhere (5, 6,
29, 30), we limit this discussion to materials considerations for combining high-performance neu-
romorphic computing with other attractive properties found in organic materials.We end Section
2 by discussing remaining challenges and opportunities for the implementation of organic mate-
rials in neuromorphic devices.

In Section 3, we discuss the potential for organic neuromorphic systems to interface directly
with biological tissues owing to the biocompatibility and softness of organic materials. The utility
of ANNs in healthcare has been demonstrated,with examples including diagnosing skin cancer via
melanoma images (31), deciphering sleep disorders from electrophysiological recordings (32), and
restoring motor functionality in a paralyzed participant (33).With the advances in neuromorphic
devices for ef!ciently emulating ANNs, we expect that the power costs and form factor necessary
to run ANNs will continue to be reduced signi!cantly. This ef!ciency improvement presents an
excellent opportunity for direct integration of ANNs with biomedical devices to form adaptable,
bioinspired prosthetics and health-monitoring tools. In particular, the favorable materials proper-
ties of organic materials make them ideally suited for seamlessly integrated biotic/abiotic neural
networks.We review the current work and remaining challenges for organic materials and devices
that impact bioinspired and biointegrated computing.

2. DEVICE AND MATERIALS REQUIREMENTS FOR
HIGH-PERFORMANCE ARTIFICIAL NEURAL NETWORK
COMPUTING
2.1. Introduction to Arti!cial Neural Network Accelerators
One approach to designing high-performance ANN accelerators relies on selectively mimick-
ing brain functionality. In biological neural networks, signals are transmitted between neurons
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through synapses (Figure 1a). At such junctions, the inputs are either excitatory or inhibitory,
altering the strength of the signal transmitted to the postsynaptic neuron. Such adaptive connec-
tivity allows the brain to execute a multitude of tasks in response to sensory activity, to learn, and
to remember. To learn, the brain relies on one of its greatest features—its synaptic plasticity. That
is, a synapse can adapt based on previous inputs through modulation of the connection strength
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Figure 1 (Figure appears on preceding page)
(a,b) Illustration of organic arti!cial synapses in a SNW-based synaptic transistor using P3HT !bers. The
probe (A′) delivers presynaptic spikes to the presynaptic ion gel membrane, which induces mobile ion
interaction with the nano!ber (B′), modulating the nano!ber conductance and inducing EPSC. The channel
response to presynaptic spikes is then delivered to an arti!cial postneuron through connections to the drain
electrode. Also shown in panel b are the scanning electron microscopy images of scaled single !bers down to
70–300 nm in diameter. (c) Current responses triggered by two consecutive spikes with an interspike interval
of 780 ms. A1 and A2 are the amplitudes of the !rst and second EPSCs, respectively. Panels a–c adapted with
permission from Reference 41; copyright The Authors, some rights reserved; exclusive licensee American
Association for the Advancement of Science (CC BY-NC 4.0). (d) Photographs of the conformable FONTs
on the brain-shaped PDMS mold and completely folded FONTs. (e) Long-term potentiation (500 ms,
−30 V) and long-term depression (500 ms, +30 V) of a FONT conforming to the brain-like mold and, when
folded, demonstrating the mechanical tolerance of synaptic behavior in organic systems. Panels d and e
adapted with permission from Reference 45; copyright 2019 American Chemical Society. Abbreviations:
EPSC, excitatory postsynaptic current; FONT, ferroelectric organic neuromorphic transistor; LTD,
long-term depression; LTP, long-term potentiation; P3HT/PEO, poly(3-hexylthiophene-2,5-diyl)/
polyethylene oxide; PDMS, polydimethylsiloxane; PSC, postsynaptic current; SNW, single nanowire.

of that synapse, making subsequent signals more or less likely to trigger an action potential.With
signal consistency and repeated learning, each synapse becomes capable of adapting to incoming
data without supervision to establish a stronger connection (or weaker in case of inhibitory signals)
with the adjacent synapse (2, 34, 35).

The power of the brain lies not only in how information is processed at the individual synapse
level, but also in the massively parallel way the synapses are wired and communicate with one
another. In synthetic neural networks, this adaptive connectivity, though it remains challenging, is
emulated using a neuromorphic device that has a variable conductance that represents the synaptic
weight. Here, we focus on the device requirements for ANN accelerators, which provide general
intuition to the reader interested in neuromorphic computing. We mainly focus on ion-gated
synaptic devices due to their excellent performance and similarity to the synaptic cleft in the brain,
which also relies on "uxes of chemical species and lies at the cornerstone of describing brain
functionality.

In hardware ANNs, an array of neuromorphic devices are needed that (a) are programmable in
parallel, (b) consumeminimal energy, (c) operate with small currents, (d) have predictable and stable
switching characteristics, (e) can retain the updated state (conductance), ( f ) can effectively update
inputs and transmit the outcoming weights onto the next node, and (g) execute the above at a high
speed. Such an array enables effective feed-forward processes and the execution of summation
and multiplication tasks along columns and rows (i.e., in a crossbar) with minimal steps and low
energy consumption. In addition to these general characteristics, such synapses should be small
enough to realize high density and be readily integrable into existing semiconductor and circuit
manufacturing.

2.2. Scaling
To emulate high-performance brain-like computing, the ANNmust be made of as many synaptic
devices per volume as possible. It is imperative that memory devices are made extremely small
and are tightly packed to ensure suf!cient memory capacity for hosting the typically large ANN
software models in hardware. However, to date, the highest-performing supercomputers remain
voluminous and power hungry. In natural organisms, thememory devices (synapses) are only∼20–
40-nm wide and are ef!ciently packed within the neural network. This length scale is comparable
to the memory cell size of no larger than ∼0.1 µm2, as recently proposed for realizing fast and
energy-ef!cient ANN accelerators (36). As such, when designing and testing any neuromorphic
device, it is important to consider the feasibility of ultimately scaling the proposed technology
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to ∼10–100-nm dimensions. If an ef!cient neuromorphic device is reported but lacks scalability
to submicrometer dimensions and a feasible path for integration into ANNs, such a technology
is unlikely to become useful for high-performance computing, while retaining utility in other
less-demanding applications.Note that other components of the ANN accelerator circuit, such as
the peripheral circuitry driving the arti!cial synapse arrays, add to the overall hardware volume.

Since memristors can be made in a simple layout, e.g., two-contact architecture, synaptic
switching is in principle envisioned to be achievable even at the atomic level in inorganic
systems (37–39). The same two-terminal approach has been recently utilized for solution pro-
cessed organic-metal-complex-based memories, in which device dimensions were controlled
by high-resolution sputtering techniques to achieve down to 60-nm2 two-level memory de-
vices with excellent and robust performance [e.g., fast switching (<30 ns), excellent endurance
(∼1012 cycles), and nonvolatility (over 500 days)] (40). This demonstration shows that memory
devices, switching characteristics, and implementation are not inherently limited by size. How-
ever, it is yet to be demonstrated whether such two-terminal devices can meet all the needed
metrics for high-performance computing utilized in functional ANN arrays and whether such
arrays would perform well.

Though organic transistors are commonly large (e.g., several micrometers in channel length),
recent efforts using transistor-like architectures have aimed to demonstrate submicrometer
organic synaptic devices. For instance, Xu et al. (41) have recently demonstrated that by using
polymer nanowires, the size of synaptic devices could be reduced to single nanowire (SNW)
transistors. By utilizing poly(3-hexylthiophene-2,5-diyl) (P3HT) coated with polyethylene oxide
(PEO), a 70-nm-wide nano!ber could be processed that allowed the researchers to demonstrate
a nanowire-based synaptic device with a 300-nm-long channel showing low-energy switching
characteristics and learning behaviors (Figure 1b,c). With such dimensions, many arti!cial
synapses could potentially be fabricated via printing techniques to form the network needed for
ANN accelerators, but this remains to be demonstrated. Note that the device fabrication by Xu
et al. (41) involved an on-wire lithography step that is not necessarily compatible with large-scale
semiconductor fabrication and back-end-of-line (BEOL) processes, which should be considered
for future integration. Nonetheless, the single !ber approach showed not only that organic
materials are promising candidates for synaptic devices, but also that with controlled scaling,
organic devices could approach the spatial dimensions found in biological systems as well as those
suggested by industry experts (36). Future work in this area, exploring novel routes to organic
electronic device fabrication at submicrometer dimensions (e.g., using advanced lithography or
self-assembly), is of utmost importance to compete with the more mature inorganic technologies.

2.3. Switching Energy and Power Consumption
In biological systems, each synaptic event consumes ∼10 fJ of energy that, combined with its mas-
sively parallel operation, enables the brain to ef!ciently execute a multitude of tasks with ∼20 W
of operating power. For ANN accelerators, the write-erase switching in each synapse (typically
10,000 to 100,000 synapses in an array) should occur at low enough switching energy to achieve
the low power of biological computation. To approach the computation ef!ciency of the brain,
the switching energy in arti!cial synapses needs to be <1 pJ per event (42). As alluded to above,
device downscaling is one approach to energy consumption reduction.

The SNW-based P3HT devices demonstrated switching energies as low as 1.23 fJ, rivaling the
natural behavior of synapses (41). In thin-!lm-based devices, van de Burgt et al. (22) demonstrated
that poly[3,4-(ethylenedioxy)thiophene]:poly(styrene sulfonate) (PEDOT:PSS) combined with
an aqueous electrolyte exhibited a linear scaling of energy consumption with device channel
area. These electrochemically switchable devices, sometimes referred to as electrochemical
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random-access memory (ECRAM), offered a theoretical energy projection of 35 aJ to switch
a 0.3- × 0.3-µm2 device. Later studies corroborated the low ECRAM energy consumption in
solid-state devices using device downscaling and experimentally achieved 80 fJ per write oper-
ation in a 15- × 45-µm2 ECRAM channel (43, 44). Though such area scaling is not unique to
organic-based ECRAMs (42), it shows that organic synapses, once scaled to smaller dimensions,
can be inherently low power.

2.4. Device Resistance
Since typical hardware ANN crossbar arrays are designed to have ∼10,000–100,000 devices per
column or row, the current running through each device will eventually add up at the column and
row ends during readout. As a result, low-conductance (or low-current) devices are necessary. For
example, if each device carries 1 µA of current, 10,000 devices will add up to as much as 10 mA
at the row or column end. This will lead to signi!cant Joule heating within the array and possibly
electromigration, destroying the metal line. In addition, large currents are symptomatic of large
power consumption. Therefore, for ANN accelerators the design rule is to limit the interconnect
currents to ∼10 µA, or 0.1–1 nA per device (the larger the array, the lower the desired current).
Note that ultimately the current at each synapse should remain suf!ciently high for sensing at the
array periphery.

Such a low current requirement necessitates the use of low-conductance materials, making or-
ganic electronic materials particularly attractive candidates since their charge carrier mobilities
are inherently low compared to crystalline semiconductors. While for other applications (e.g.,
solar cells, transistors, sensors) low mobility is a disadvantage, it can be advantageous for neuro-
morphic computing. More speci!cally, the low-mobility materials that are typically disregarded
following synthesis and initial testing as poor conductors now have an attractive application as low-
conductance neuromorphic devices. Furthermore, the conductivity of organic materials can be
tuned through molecular design, doping, blending, and even processing. Most organic electronic
materials already have an inherently tunable conductance, in comparison to inorganic counter-
parts, which gives them a competitive edge in this area as long as the materials conductance can
be switched ef!ciently (i.e., while meeting all of the other discussed metrics). For example, in an
ECRAM array programmed in parallel (44), it was found that by diluting PEDOT:PSS with an
additional PSS insulator within the channel to reduce its conductivity, the quality of the write-
read operations could be maintained with low noise and high programming linearity. The diluted
channel allowed for the current to be as low as 50 nA using a−0.1-V read voltage. Such low device
conductance combined with linear switching is ideal for scaling to large neuromorphic arrays.

Low conductivity synaptic behavior can also be achieved in single material systems. For ex-
ample, in the case of ferroelectric organic neuromorphic transistors (FONTs), currents as low as
10 nA have been demonstrated by Jang et al. (45). These devices were able to function even when
fully folded thanks to their softness, which allowed them to adhere to a brain model having me-
chanical properties comparable to those of a real brain (Figure 1d,e). However, once the devices
are scaled well below the substrate bending radius, their inherent "exibility becomes unimportant
as at 100-nm scale the substrate is effectively "at. Having said that, mechanical "exibility is de-
sired for applications in which aggressive device scaling is not needed, e.g., for interfacing with
biological systems, as we discuss in Section 3.

2.5. Dynamic Range
Similar to transistors, synaptic devices must also demonstrate distinct high- and low-conductance
states. Though the natural brain has evolved to exhibit some neural activity even in response to
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chaotic signals, this behavior remains challenging to fully understand and utilize in a synthetic
neural system (46). Hardware ANNs thus typically strive for a large and linear dynamic range at
each synaptic node to tackle two aspects: device-to-device variation and write noise tolerance. For
example, if the device median conductance varies across devices in an array but they have a large
dynamic range, all devices in the array can be operated over a common (or smaller) conductance
range. This is not possible if the devices have limited and nonoverlapping dynamic ranges.

In principle, while a large dynamic range is desirable, it is not a stringent requirement for
neuromorphic computing if the system demonstrates distinct conductance states. In the case of
multilevel conductance states, the range must be suf!ciently wide to reliably program to all de-
sired states. In other words, a wider dynamic range improves the device tolerance to write noise
since with low write noise signals can be better distinguished from environmental perturbations
(thermal, mechanical, photo, etc.) as well as inherent device programming noise. Typically, the
targeted dynamic range is >330 times larger than the device write noise for high-accuracy ANNs
(47). However, there are diminishing returns on increasing the dynamic range beyond a high/low
ratio of 10–100× due to the requirement for linear spacing between conductance states. Note
that, per the low-conductance requirement, it is best if both the ON and OFF current levels are
simultaneously low (e.g., 1–10 Mohm device operation is better than 1–10 kohm operation).

If a device is too sensitive to minute environmental variations, one might consider improving
stimulus speci!city and sensitivity within the active channel. For instance, Yang et al. (48) re-
cently demonstrated the use of chlorophyll, a light-sensitive and -speci!c molecule, to achieve
light-stimulated synaptic transistors. The transistor devices used a common donor-acceptor
diketopyrrolopyrrole-based polymer, but chlorophyll was embedded in the channel, thus affording
photo-responsive organic !eld-effect transistors (49). Owing to high light sensitivity, the result-
ing synaptic devices could exhibit excellent switching behaviors even when the drain voltage was
as low as 10−5 V. Such enhancement in stimulus sensitivity is a promising approach for materials
candidates that do not inherently exhibit a large dynamic range. However, this approach faces a
major challenge in terms of focusing light onto individual devices, especially once the devices are
scaled down to the submicrometer dimensions required for practical computing applications.

In more extensively studied transistor devices such as !eld-effect transistors and ECRAMs, or-
ganic semiconductors have already shown suf!ciently large dynamic ranges with over 100 states
in the linear regime. In addition, several organic systems, such as PEDOT:PSS, P3HT, polyani-
line (PANI), and small molecules, can turn from a high-resistance state to a low-resistance state
when employed in ReRAMs (50, 51), ECRAMs (22, 52), and FONTs (45). However, a few chal-
lenges remain: the ability to switch with linear characteristics and, no less importantly, the ability
to exhibit multiple conductance states. To address these challenges, a recent study demonstrated
ECRAMs with 4× dynamic range while retaining all of the other neuromorphic device require-
ments: 20-ns switching, submicrosecond write-read cycling, low noise, and low-voltage (±1 V)
and low-energy (∼80 fJ per write) operation combined with excellent endurance (>109 write-
read operations at 90°C), as shown in Figure 2 (43). This improvement was achieved by utiliz-
ing a novel semiconducting polymer, poly(2-(3,3-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2-
bithiophen]-5-yl)thieno[3,2-b]thiophene) [p(g2T-TT)], which demonstrates one of the hallmarks
of organic electronics in tuning synaptic device properties by new materials design.

2.6. Number of Conductance States
When designing ANNs, it is imperative that the functional materials possess distinct states to
emulate synaptic behavior. As alluded to above, for hardware ANN accelerators, it is important
that each state (e.g., among 100 states) is linearly programmable in response to an external input
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(electrical potential or chemical stimulus). For some applications, a two-state device that simply
demonstrates high- and low-conductance states can be suf!cient, e.g., in low-precision ANN ac-
celerators, but this may hinder overall ANN accuracy. Generally, there is no clear guideline for
the number of required conductance states, as this depends on the speci!cs of the targeted ap-
plication, particularly the precision of the analog-to-digital conversion (ADC) at the periphery
of the array. More concretely, while the ADC performed on the array periphery is typically 8-bit
or lower precision and depends on the application, synaptic devices having a high number of and
precisely distinguishable states result in higher accuracy even with low-precision ADC. Based on
our previous experience, it is reasonable to target analog device operation with 10–100 clearly
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Figure 2 (Figure appears on preceding page)
Organic arti!cial synapses for high-performance ANN accelerators. (a) Photograph of a 3 × 3 ECRAM prototype before access device
integration along with a schematic (1 × 2) of an IFG resistive memory programmable in parallel, which uses a diffusive memristor
(control gate) as an access device. The IFG array is programmed by applying voltages Vi and V j along the rows and columns,
respectively. Photo in panel a reproduced with permission from A. Melianas and S. Keene; schematic adapted with permission from
Reference 44. (b) Long-term potentiation and depression displaying 500 discrete states over the operating range in PEDOT:PSS-based
ECRAM. The inset is a zoomed-in image showing the individual states. Panel b adapted with permission from Reference 22; copyright
2017 Springer Nature. (c) Estimated (dashed line) and measured (open and closed squares) redox transistor switching speed and energy
scaling with channel area. The inset shows the quality of the switching at selected device dimensions. (d) Endurance of ECRAM devices
based on p(g2T-TT) to >109 write-read events at 90°C (red), followed by additional >109 write-read events at 30°C (black) using ±1-V,
1-µs pulses. (e) Organic ECRAM submicrosecond write-read cycling: potentiation and depression under ±2-V, 200-ns write pulses
(gray shaded area), followed by 100-ns write-read delay and +0.3-V, 500-ns readout (orange shaded area). Panel c–e adapted with
permission from Reference 43; copyright The Authors, some rights reserved; exclusive licensee American Association for the
Advancement of Science (CC BY-NC 4.0). Abbreviations: ANN, arti!cial neural network; ECRAM, electrochemical random-access
memory; GD, gate drain; IFG, ionic "oating-gate; p(g2T-TT), poly(2-(3,3-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2-
bithiophen]-5-yl)thieno[3,2-b]thiophene); PEDOT:PSS, poly[3,4-(ethylenedioxy)thiophene]:poly(styrene sulfonate); SD, source drain.

distinguishable states. For applications that require only short-term plasticity, i.e., a current spike
that subsequently decays with time, two-state materials are also suitable.

Write noise is a common problem for conventional resistive switches but has been overcome
using ECRAMs (22). For instance, in electrochemically gated devices, PEDOT:PSS exhibited
500 distinct conductance states (Figure 2a,b) and extremely low write noise, rendering these
states clearly distinguishable (22). Owing to the ability of conjugated polymers to be control-
lably doped/dedoped upon controlled ion extraction or injection, such multilevel conductance has
been less challenging to attain than in inorganic resistive switches (53), e.g., ReRAMs and PCMs,
in which the conductance tuning mechanism inherently relies on at least one stochastic process.
Modulating conjugated polymer conductivity by ion insertion without degrading the materials is
thus quite attractive for realizing synaptic behaviors.

2.7. Quality of Resistive Switching
It is not enough to have resistive switching; the conductance modulation should ideally be linear,
symmetric, and low noise for potentiation and depression. In ANN accelerators, a linear response
to identical inputs is desired to allow synapses to accurately and repeatably update correspond-
ing weights without knowledge of the initial state. To effectively erase during the learning phase,
an opposite and symmetric response is also needed when an opposite stimulus is applied. This is
currently a major bottleneck for conventional memristors, such as PCMs and ReRAMs (6). Due
to the stochastic nature of the switching behavior in these systems, it is challenging to achieve
linearity and symmetry in their current responses, which inevitably degrades ANN accuracy due
to inaccurate write-read operations. As a result, memory elements in conventional ReRAM and
PCM crossbars are programmed sequentially, limiting their latency to ∼O(N × M) write cycles,
where O is the number of operations. In contrast, a linearly programmable memory would enable
arrays that can be updated within a single cycle, resulting in an O(N × M) advantage and large
gains in latency and energy ef!ciency. For example, using a proof of concept 3 × 3 array of lin-
early and symmetrically programmable organic ECRAMs (Figure 2a,b), Fuller et al. (44) recently
demonstrated parallel array programming at high ANN accuracy, while architectural simulations
predicted that a 1,024 × 1,024 array would have energy, latency, and area advantages of 476×,
16×, and 9.5×, respectively, compared to an optimized eight-bit static random-access memory
accelerator, highlighting the potential of organic synaptic memories in hardware ANNs.

In electrochemical systems in which the conductance state depends mainly on the injec-
tion or extraction of ions, a linear increase or decrease in current was achieved in organic
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conducting polymers, e.g., PEDOT:PSS (22, 44), and more recently in poly(2-(3,3-bis(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)-[2,2-bithiophen]-5-yl)thieno[3,2-b]thiophene) [p(g2T-TT)] by
Melianas et al. (43) (Figure 2c,d). From a semiconductor physics standpoint, this linear behavior
is likely related to the !lling of the density of states (DoS) of the organic semiconductor upon
ion insertion. In general, DoS !lling should be such that the change in material conductance
(dG) scales linearly with injected ionic charge (dQ) per write pulse. This can be achieved if the
material carrier mobility is independent of injected ionic carrier density, as has been recently
demonstrated in PEDOT:PSS- and p(g2T-TT)-based ECRAMs exhibiting a linear dG versus dQ
response within their operating ranges (43). Most importantly, the linear switching demonstrated
by Melianas et al. is attained at high speed (down to 20-ns switching) and with the high endurance
(>109 operations) needed for integration into ANN accelerators.

Other strategies to optimize the linear response of electrochemically gated organic semicon-
ductors are to shift the DoS using chemical additives (54, 55), through synthetic backbone design
(56), or by changing the energy level of the reference gate (57, 58). Organic-based ECRAMs are
hence promising device candidates for achieving high-quality resistive switching since the redox
reactions in the channel can be highly reversible and the same material can be used for both the
channel and gate. This reversibility of ion insertion results in other desirable device parameters
like high endurance, as we discuss in Section 2.10. These properties contrast with inorganic ma-
terials, in which ion insertion may perturb the lattice quite signi!cantly (59).

2.8. Switching Speed
Once a material and the synaptic device made thereof can demonstrate high-quality switching be-
havior (i.e., linear and highly predictable switching), the next question is, How fast can it switch?
The execution of ANN tasks requires fast and repeatable synaptic weight updates. While bio-
logical brains, through long-term training and effective synapse-to-synapse transmission, operate
in the 1–100-Hz range, such speed is not suf!cient for ef!cient ANN computation using arti!-
cial synapses as they lack the massive connectivity and parallelism. In ANN arrays, each synaptic
node is required to update the corresponding weight at megahertz frequencies. Such speeds are
required for ANN accelerators to compete with the latency of digital ANN implementations uti-
lizing graphics processing units and application-speci!c integrated circuits.

It has already been demonstrated that inorganic materials have fast switching speeds in synaptic
devices (60, 61). The search for, and design of, fast switching organic systems is an emerging
and promising !eld of study (53, 62). For instance, polymer-based ECRAMs have demonstrated
∼50-MHz switching speeds (20-ns write pulses) and are predicted to operate faster with further
downscaling (43, 44). Modeling predicts that 1- × 1-µm devices will switch faster than 1 GHz
using<10 fJ per write (63) (Figure 2c,d). In addition, these devices demonstrated submicrosecond
settling time (Figure 2e), i.e., the time it takes for the device conductance to equilibrate following
a write pulse, which is critical for achieving low latency in ANN accelerators. This is signi!cantly
faster than any inorganic electrochemical memory (millisecond to second settling times) reported
to date (64–66). These data demonstrate that organic electronic materials can achieve switching
speeds that rival those observed in inorganic resistive switches.

With the ability of organic semiconductors to be tailored both chemically andmorphologically,
the write-read speeds can be tuned by varying the ionic injection and retention rates.Via side-chain
engineering, for instance, ion insertion as well as concomitant backbone doping and dedoping, i.e.,
conductance modulation, can be tuned in organic electrochemical transistors (OECTs) (67, 68).
Indeed, Bischak et al. (69) recently demonstrated that by careful selection of ion-exchange gels,
the ionic dynamics and, hence, doping kinetics between biologically relevant aqueous electrolytes
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(e.g., K+) and an otherwise too hydrophobic semiconducting polymer could be tuned. Taking
advantage of the structural tunability of organic systems is hence a useful strategy for improving
switching dynamics in synaptic memories.

One important materials selection strategy for rapid switching has been the use of small ionic
species in electrolyte-gated devices. Additionally, it has been recently proposed that fast switching
in organic electrochemical devices occurs when mobile ions are incorporated into the semicon-
ductor channel before electrochemical gating, thereby reducing the ion transit distance and time
(70). It was even demonstrated that following deposition of the ion gel electrolyte the channel
conductance is affected as a result of ion uptake and passive doping of the semiconducting poly-
mer (43). Intuitively, the surprisingly fast switching (20 ns) in these systems could be associated
with very mobile ionic species, more speci!cally protons. This hypothesis was corroborated when
a protic ionic liquid was compared to its aprotic counterpart in solid-state ECRAMs (43). Devices
based on the protic ionic liquid performed signi!cantly better. Similar fast dynamics had been
previously achieved in PEDOT:PSS-based ECRAMs when using a proton-based electrolyte (22).
Novel polymer designs may focus on realizing morphologies and chemical environments favoring
the formation of hydrogen-bonded networks to facilitate high-speed Grotthuss transport (71) of
protons (or other small ions) in organic devices.

2.9. State Retention
The synaptic weight retention time for speci!c materials and devices determines suitable appli-
cations. In general, there are two main types of applications. The !rst are dot-product engines,
in which the devices are programmed to the desired conductance and are left untouched onward,
e.g., the chips in a self-driving car. This type of application requires a retention time of ∼10 years,
which remains challenging to attain in most organic materials (51) but is possible using inorganic
materials. The second is online learning, in which the ANN is constantly learning, e.g., a "ying
drone that adapts to the changing environment on the "y. In this case, the device conductance
(i.e., weights) is constantly updated. These applications don’t require long retention, and <1 min
can be enough. Shorter retention, such as that used in spiking neural networks in which the device
conductance decays following a spike, is outside the scope of this discussion.

Organic-based synaptic devices have repeatedly demonstrated short-term retention. In prin-
ciple, the device volatility can be inherent to the material, but through device design it has been
shown that, for example, by engineering the gating mechanism, the ionic drift in and out of the
channel can be strictly controlled by the applied voltage and the spike rate (22, 52, 62, 72). For
example, in organic ECRAM devices, by preventing the ions injected into the semiconducting
channel from drifting back toward the gate contact, the induced state can be retained until a po-
tential is intentionally applied or undesirable electrical leaks occur. Such control could be achieved
in PEDOT:PSS-based ECRAMs in which an additional polymer layer was inserted at the gate-
electrolyte interface, like a supercapacitor architecture, thus prohibiting free ion migration after
the gate voltage is turned off (22). Using this approach, state retention on the order of minutes
has been demonstrated using p(g2T-TT) (43). Such retention was achieved by controlling the
capacitive nature of the gate and channel and utilizing a digital switch to regulate the connection
between the gate and channel electrodes and to prevent premature ECRAM discharge.

To simplify the architecture of the ECRAM devices, Fuller et al. (44) demonstrated the use
of a volatile conductive-bridge memory (CBM) to act as a two-terminal thresholding switch at
the PEDOT:PSS gate, constituting an ionic "oating-gate (IFG) memory, as shown in Figure 2a.
Following programming pulses, the IFGwas able to retain its state due to the high OFF resistance
(∼1012) of the CBM switch. Furthermore, in such battery-like ECRAMs, electronically blocking
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electrolytes are also sought after as they help prevent any parasitic current "ow between the
contacts. If state retention is still insuf!cient, the learned weights can be of"oaded to an external
inorganic memory for long-term storage.

2.10. Endurance and Environmental Stability
Like conventional computing devices, neuromorphic devices must endure many switching events.
Within the array, each synaptic device must operate reliably for a large number of tuning events to
reliably execute intended ANN tasks. Therefore, any proposed device should be endurance tested
for conductance drift as well as changes in switching characteristics. If the device degrades, the
ANN computational accuracy inevitably deteriorates. Typically, computer hardware is designed
to last ∼10 years. In the case of a training accelerator operating at 1 MHz, the devices should
aim for an endurance of 1014 switching events (comparable endurance to dynamic random-access
memory cells). For inference-only accelerators, ∼106 events are expected (for the initial training
of the array). In ANNs, parallel programming itself remains challenging; therefore, it is more
intuitive to aim for highly durable synaptic devices.

The previously discussed ECRAM examples have demonstrated durable switching behaviors
using both PEDOT:PSS and p(g2T-TT) with >2 × 109 write-read events (43, 44), which is com-
parable to the endurance of many emerging inorganic nonvolatile memory devices (73). One of
the attractive features found in PEDOT:PSS is that the dedoping and doping process favors (but is
not limited to) the insertion and extraction, respectively, of protons, the smallest cationic species.
This allows for minimal structural degradation and/or trapping, hence the excellent write-read cy-
cling stability. Such switching behavior was previously utilized by Fuller et al. (44) to demonstrate
over 108 write-read events and has been exploited in other recent studies, as shown in Figure 2e,
accompanied with the rapid switching discussed above (43).

Other polymer systems have been investigated especially owing to their open structure,
which allows for facile ionic intercalation. Such open structure allows for the insertion of
large ionic species, for instance, using gel electrolytes such as 1-ethyl-3-methylimidazolium
bis(tri"uoromethylsulfonyl)amide in the case of P3HT, thus enabling stable writing and eras-
ing in all-solid-state memory devices (74). PEDOT:PSS-based synaptic devices have also been
demonstrated to stably modulate over a large number of events whether in liquid electrolytes
(e.g., aqueous KCl) or gel electrolytes (22, 44, 75). Once again, the optimization of electrolyte
and !lm morphology is crucial for the realization of highly durable organic devices. Additional
considerations that are typically relevant in other electronic devices are the selection of dopants
(76), moisture af!nity (not necessarily a challenge depending on the operating environment), and
interface engineering.

The operational environment must be considered when benchmarking the endurance of a
neuromorphic device. Since any device inevitably heats up during operation due to Joule heating,
as well as due to the heating of peripheral electronics in the case of monolithic integration with
silicon electronics, the device operating temperature must be considered in its design to account
for internal and external heating. In addition, the chemical (humidity, oxygen, etc.) environment
in which the device operates must also be considered. For example, materials that require a
certain humidity to operate well (e.g., proton-conducting electrolytes) are not well suited for
integration into an ANN accelerator, since standard electronics packaging inevitably leads to dry
conditions and thus limits device performance. As a result, the device properties should ideally
be benchmarked versus intended use and environmental conditions (humidity, temperature, etc.).
In that regard, novel designs for electrolytes, conducting materials, and encapsulation techniques
should also be considered. In fact, in the study by Melianas et al. (43), ECRAM devices based on
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p(g2T-TT) could reliably function under elevated temperatures and dry conditions, which is
typically highly challenging when employing proton conductors as their performance rapidly
deteriorates when not properly hydrated. Under such conditions, these devices also exhibited
durable switching behaviors. Not only does this work demonstrate the ability of organic-based
memory devices to be suf!ciently durable once implemented in existing circuitries, but it also
shows the potential enhancement in neuromorphic performance via novel polymer designs
beyond PEDOT:PSS.

Additionally, environmental oxygen presents a challenge for operating organic neuromorphic
devices due to the instability of many organic semiconductors to oxidation.One approach to avoid
parasitic reactions with oxygen in PEDOT:PSS-based devices is to introduce chemical dopants
that act as reducing agents to stabilize the reduced state of PEDOT (55). Additionally, encapsu-
lation methods can be utilized to reduce the presence of oxygen at the device interface. Another
strategy for organic materials is to design polymers with deeper ionization potential (p type) or
electron af!nity (n type) to make oxidation reactions unfavorable. Giovannitti et al. (56) demon-
strated that by synthesizing a polymer backbone consisting of a pyridine-"anked diketopyrrolopy-
rrole unit and a 3,3′-methoxybithiophene unit, the polymer was highly stable in air and avoided
parasitic oxidation. These examples demonstrate the unique advantages of the tunable nature of
organic semiconductors for improved endurance and environmental stability.

2.11. Back-End-of-Line Compatibility
For large-scale integration with CMOSs, organic devices must withstand semiconductor foundry
conditions. More speci!cally, the devices must at the very least withstand up to an ∼400°C an-
neal during the BEOL portion of integrated circuit fabrication. Though organic materials can be
molecularly tailored or engineered to withstand most steps in nanofabrication, thermal durabil-
ity remains one of the most challenging requirements. Thermogravimetric analysis and differen-
tial scanning calorimetry are commonly used to assess the thermal stability of organic materials.
Though several conjugated systems exhibit thermal degradation at temperatures as high as 500°C,
systematic analysis of the electronic properties after such harsh thermal exposure is rarely carried
out. For organic synaptic devices, all components must be able to withstand foundry tempera-
tures without jeopardizing the device integrity and performance.This remains challenging asmost
successful active materials, e.g., PEDOT:PSS, exhibit decomposition temperatures around 300°C
(77). The bottleneck in this case is not only whether the thin !lm can survive the harsh thermal
conditions, but also whether the formed crystalline domains can maintain their microstructural
integrity during subsequent resistive switching, e.g., following ion insertion (78).

Recent studies have demonstrated the use of high-Tg insulating matrices as rigid hosts to pro-
cess thermally robust semiconducting composites into thin !lms (79, 80). In addition, semicon-
ducting polymers are structurally tunable to attain properties including thermal stability (81).
These approaches show that there might be processing strategies for stable semiconducting sys-
tems. Common molecular considerations for thermal robustness include the use of highly fused
systems, therefore minimizing any rotational freedom and backbone planarity; increasing the
molecular weight; cross-linking; and addition of pendant groups (81). Such strategies are envi-
sioned to allow organic semiconductors to withstand extreme heat and could ensure compliance
of organic synaptic devices with BEOL processing. Further research efforts in that regard are
warranted as no organic-based device has yet demonstrated compliance with foundry conditions.

In addition to the semiconducting channel stability, the electrolyte must also survive the baking
steps. Several demonstrations of organic synaptic devices we have discussed utilized ionic liquid
in gel electrolytes. Ionic liquids, though molten at room temperature, have been reported to be
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stable up to 400°C (82, 83), but they are typically infused in gels that soften at high temperatures,
affecting their mechanical integrity. Corresponding gel electrolytes are obtained using thermally
robust Te"on-likematrices (43), but it remains to be investigated whether such systems also enable
the high-performance synaptic behaviors discussed above (e.g., high speed, linearity, endurance)
With reported thermal stability of individual components, the obvious next step is to conduct
thermal annealing tests on fully assembled devices and analyze their layer-to-layer integrity as well
as electrical performance after exposure to BEOL conditions. Ultimately, BEOL compatibility
appears to be the most challenging requirement if the designed synaptic devices are intended for
high-performance neuromorphic computing.

While it may be feasible to achieve most of the metrics discussed above, e.g., as demonstrated
in organic-based ECRAMs, competing in the area of high-performance computing remains chal-
lenging for organic devices due to the technological maturity of inorganic technologies. To a large
extent, the dif!culty for organic materials arises due to the need to achieve both high performance
and scaling to technologically relevant submicrometer scales, all while maintaining compatibility
with semiconductor foundry fabrication processes.While several reports have indicated promising
progress to address these challenges, further studies are needed to meet all the stringent neuro-
morphic device requirements in a single organic material or device system.

Despite the challenges facing organic electronicmaterials in the area of high-performance neu-
romorphic computing, they offer unique opportunities owing to their intrinsic biocompatibility,
which is attainable in inorganic materials only via engineering strategies (84). Due to this advan-
tage, we therefore argue that a yet largely untapped potential of organic neuromorphic devices lies
in bioelectronics applications. Having equipped the reader with the general device requirements
for computing applications, we now shift our focus to more biologically oriented applications, in
which many of the before-mentioned requirements are less stringent and a new set of require-
ments emerges.

3. BIOINTERFACING
In addition to devices for ANN accelerators, organic semiconducting materials and the resulting
electronic devices have recently been demonstrated as great candidates for interfacing with bi-
ological tissues for sensing, medical, neuro-prosthetic, and other bioelectronics applications (85,
86). In particular, the ion-gated organic materials discussed above have shown excellent proper-
ties for integration with tissue due to their water stability, low-voltage operation, soft mechanical
properties, and ability to convert ion/chemical signals in solution to electronic signals (86). Be-
cause these materials can achieve the biocompatibility required for biotic/abiotic interfaces and
have unique properties that allow them to emulate the biological synapses, there has been increas-
ing interest in utilizing organic materials for directly integrating ANNs with biomedical devices.
As discussed in the introduction, integrating ANNs with implantable devices has the potential
to enable adaptable prosthetic or robotic devices that are tailored to the individual user (87). We
envision that ANN integrated systems could augment or replace functional systems in patients
suffering from irreparable trauma, speci!cally damage to neural tissue. In this section, we discuss
the current work aimed at integrating neuromorphic devices with biological tissue and give an
outlook on the opportunities and materials strategies in these areas for organic materials.

There are a wide range of approaches to coupling between devices and biological neural
networks. One approach is to utilize functional materials that can replicate the response of
living matter and directly stimulate the surrounding neural tissue. This approach is exempli!ed
by the work of Maya-Vetencourt et al. (88) in which they utilize a silk-PEDOT:PSS-P3HT
photo-responsive prosthesis implanted in the retina of rats with retinal dystrophy to directly

www.annualreviews.org • Strategies for Organic Neuromorphic Devices 61

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
02

1.
51

:4
7-

71
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 - 

M
ai

n 
C

am
pu

s -
 R

ob
er

t C
ro

w
n 

La
w

 L
ib

ra
ry

 o
n 

10
/1

5/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



stimulate the optic nerve. This direct conversion of the natural light stimulus captured by the eye
to a photovoltage that could stimulate the nerve tissue demonstrated successful partial restoration
of sight (persisting up to 10 months after surgery) in the dystrophic rats. In later work, the
authors adapted their device by utilizing injectable P3HT nanoparticles to avoid the surgical
implantation of the prosthetic device (89). While this approach is highly promising, one of the
remaining challenges is to capture the complex functionality of the speci!c retinal cells to better
emulate and restore biological visual mechanics.

Another approach is to use ANNs to preprocess incoming signals and perform subsequent ac-
tions tailored to the unique characteristics of the user or system. For instance, Schwemmer et al.
(33) demonstrated that brain-computer interfaces for repairing motor function could be signi!-
cantly enhanced by using a neural network to interpret the electrical signals from amicroelectrode
array implanted in the motor cortex. Using a transferred neural network model, the participant,
whose hand and arm were paralyzed due to a spinal cord injury, was able to train the network
to recognize brain signals corresponding to the desired hand motions. Furthermore, by utilizing
functional electrical stimulation on the participant’s forearm, the paralyzed handwas reanimated in
real time as a response to the participant’s brain activity, showing the potential to restore cortical-
motor functionality. However, this approach is limited to lab-scale experiments due to the poor
chronic stability of silicon-based recording devices (90) and the bulky electronics required to run
the ANN algorithm. Similarly, Taunyazov et al. (91) demonstrated how ANNs can be utilized to
emulate event-driven perception using visual and tactile sensors for robotics. The authors uti-
lized sensors that output spike encoded signals (92) and fed them into a spiking neural network
model to enable real-time learning and response in a robotic arm. Similar systems integrated with
biological tissue can be envisioned for bioinspired prosthetic interfaces (93).

To build up these neuro-inspired systems, it is critical to start at the individual device level.
While the performance metrics for neuroinspired bioelectronic devices are not as straightforward
as for neuromorphic devices in ANN accelerators, we offer some strategies to follow for utilizing
organic materials. First, the biocompatibility of the device itself should be assessed for long-term
stability in implantable interfaces. Second, the device should offer some biological functionality,
such as synaptic plasticity, sensory perception, chemical sensitivity, or neural stimulation, that can
be utilized in the context of the biotic/abiotic interface. In the rest of this section, we use examples
from the literature to highlight unique approaches for utilizing organic materials for biointerfac-
ing neuromorphic devices.

Organic synaptic devices have repeatedly demonstrated stimulus-responsive brain-inspired
functions (94). For instance, organic electrochemical synaptic devices have been shown to me-
diate and modulate communication between living biological cells and respond to external stim-
uli (95, 96). Using PANI- or PEDOT:PSS-based electrochemical devices, biological stimuli were
used to condition or train arti!cial synapses, mimicking communication between neurons in the
brain. More speci!cally, the !rst evidence of unidirectional, activity-dependent coupling of two
live neurons in brain slices via organic memristive devices (OMDs) was demonstrated, as shown
in Figure 3a,b (97). The OMD used was a polymeric electrochemical element with hysteresis and
rectifying features. OMD coupling with the live cells was facilitated by tuning and control of its
resistance via neuronal activity and the excitation threshold in the postsynaptic neuron as shown
in Figure 3c.

Likewise, other research groups have extensively shown that OECTs that respond to biolog-
ically relevant ions are excellent candidates for biointerfacing (23, 75, 98, 99). OECTs use an
electrolyte to modulate the conductance state of the channel via the migration of ionic species,
typically in response to a small potential change (100). These devices are thus able to emulate the
ion "ux–driven synaptic activity found in biological systems. Owing to the creation of an internal
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Figure 3 (Figure appears on preceding page)
The road toward neurotransmitter-mediated biomachine interfacing. (a) Infrared differential interference
contrast microphotograph of a P7 rat brain slice with visually identi!ed L5/6 neocortical cells (cells 1 and 2)
recorded simultaneously. (b) Electrical scheme of two patch-clamp ampli!er head stages (patch 1 and
patch 2), (!,") patch-clamp holding inputs and (#,$) patch-clamp primary outputs, and an OMD-based
circuit (5 × 5 mm) connecting two neurons. (c) Traces of current-clamp recordings from cells 1 and 2 before
(left) (89) and after (right) OMD coupling. Panels a–c adapted with permission from Reference 97. (d) Device
design utilizing biological inputs, i.e., dopamine release from living neuroendocrine cells. (e) Micrographs
demonstrating live cells on a PEDOT:PSS-based arti!cial synapse. ( f ) Demonstration of short-term and
long-term modulation in the postsynaptic current in response to dopamine oxidation. Panels d–f adapted
with permission from Reference 102; copyright 2020 Springer Nature. Abbreviations: A, ampli!er; M,
memristive device; OMD, organic memristive device; PEDOT:PSS, poly[3,4-(ethylenedioxy)thiophene]:
poly(styrene sulfonate); R, resistor.

electric double layer, these devices are inherently capacitive, which leads to low noise, minimal
leakage currents, low operating voltages, and high gain. Additionally, the lack of glial response
to "exible OECT-based electrocorticography recording electrode arrays is a demonstration of
their biocompatibility (101). Their simpli!ed device architecture, mode of operation, scalability,
and ability to be interconnected through a common gate or electrolyte (75, 98, 99) also make
OECTs an attractive device architecture for integrated bioelectronics. Such features are promis-
ing in designing arti!cial perceptron systems that can complement and even mimic biological
sensory systems. These devices would enable synaptic training using biological signals, such as
chemical neurotransmitters, light, and pressure.

In biological systems, it is common that neurons communicate via the release and detection of
chemical neurotransmitters. Synaptic activity and the inherent neural connectivity result from the
occurrence of such chemical signaling. To enable the interfacing between neuromorphic devices
and biological cells, it is important to demonstrate synaptic conditioning based on these chemical
signals. Keene et al. (102) recently demonstrated a biohybrid synapse with neurotransmitter-
mediated plasticity that enabled synaptic conditioning in response to dopamine, a prominent
neurotransmitter linked to conditioning in the brain (103). In this work, PC-12 neuroendocrine
cells were plated onto an organic neuromorphic device, which acted as a postsynapse via a
micro"uidic channel. The PC-12 cell layer served as a presynaptic domain that spontaneously
released dopamine molecules onto the gate interface of the PEDOT:PSS-based postsynapse
(Figure 3d). By controlling the dopamine recycling with micro"uidic "ow, the doping state of
the polymer in the channel could be conditioned in response to charges freed by the oxidation of
dopamine into its quinone form, a behavior that emulates dopamine secretion in synaptic clefts
(Figure 3e,f ). It was shown that the presence of dopamine not only dedopes (i.e., injects electrons
into) the channel upon a postsynaptic potential, but also enables long-term state retention.
Other studies have also demonstrated such short-term plasticity of PEDOT:PSS in response to
dopamine in a two-terminal device con!guration (72). In combination with the fast response, i.e.,
short-term plasticity, this dopamine-dependent long-term potentiation showed that the hybrid
device can emulate Hebbian learning, a path toward ANNs and adaptive biological interfaces.

A feedback process between a sensory receptor, a motor unit, and an arti!cial neuron is sought
when targeting machine learning applications (104). Light, sound, temperature, gases, liquids,
and pressure are the common environmental stimuli that trigger the peripheral nervous system,
which can in turn transmit the generated action potentials onto the central nervous system and
determine behavior (94). To ensure low latency in robotics and prosthetics applications, the
sensory units should be equipped with hardware ANNs to process the data on site and in real
time, before subsequent data transfer to the motor units. By directly integrating hardware ANNs,
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such devices could run independently of external connections (e.g., WiFi, Bluetooth), potentially
enabling lower latency and energy costs for data processing. For instance, to sense light and react
accordingly, Lee et al. (104) demonstrated an organic optoelectronic sensorimotor synapse. By
bridging an organic optoelectronic synapse and a neuromuscular system based on a stretchable
organic nanowire synaptic transistor, the authors could mimic the biological response to light. A
photodetector was used as the sensory unit, from which voltages could be generated in response
to optical spikes. The generated potential pulses were then used to drive a stretchable synaptic
transistor device, which could then be trained to drive a polymer actuator device. The synaptic
transistor was designed to be fully stretchable and extremely soft by using ultrastretchable styrene
ethylene butylene styrene as the substrate and carbon nanotube wires (CNWs) as source and drain
contacts. A stretchable active channel was achieved by using semiconducting nanowires made of
an electro-spun blend of a fused-thiophene diketopyrrolopyrrole-conjugated polymer and PEO.
To drive the synaptic device, a soft gel based on poly(styrene-b-methyl methacrylate-b-styrene)
triblock copolymer and 1-ethyl-3-methylimidazolium bis(tri"uoromethylsulfonyl)imide ionic
liquid was used as the electrolyte. The use of all-stretchable polymer components enabled such
transistor devices to be stretchable up to 100% with no degradation in electronic performance.
More impressive was the synaptic plasticity demonstrated in these devices, even under 100%
strain. The stretchable nature of these devices enables their integration with moving tissue,
such as in muscles or on the skin, without signi!cant mechanical degradation due to strain
cycling.

The conductance of the CNWdevice showed a spike duration–dependent plasticity and a spike
number–dependent plasticity, which are learning behaviors found in natural systems. Such learn-
ing behavior could be used to contract and extend a polymer-based actuator emulating muscular
functions to perform tapping-like tasks such as communicating inMorse code (Figure 4a,b). This
closed-loop system is thus an excellent example of mimicking muscle movement (e.g., blinking) in
response to light after training or synaptic conditioning. In such circuit designs, the organic synap-
tic transistor is the processing center of the loop. On the one hand, it is envisioned that biological
photoreceptors can interface with arti!cial synapses, enabling applications in vision correction,
such as by enhancing the speci!city of stimulation of the optic nerve. On the other hand, arti!cial
synapses can also be used to directly interface and drive biological muscles—a possible research
direction for organic-based smart prosthetics.

In a recent article by Kim et al. (105), a synaptic transistor coupled with a pressure sensor and a
ring oscillator was reported to emulate the functions of a biological afferent nerve. In this design,
an array of pressure sensors mimicking animal skin was utilized to capacitively tune the output
voltage in response to touch. The generated pulses were then processed through a series of ring
oscillators before being used to modulate the conductance state within the channel of an organic
synaptic transistor (Figure 4b,c).The ring oscillators allowed for the programming of the synaptic
transistor to function as an adder when multiple pressure pulses were applied, thus emulating
dendrite connectivity found in biological neurons in which multiple presynaptic action potentials
from separate somatotopic coordinates are commonly summed (106). The measured postsynaptic
currents in the memory unit exhibited a pressure-dependent plasticity as well as a time-dependent
plasticity, which are learning behaviors found in biological afferent nerves. The current retention
times were also found to be in a similar range as the biological systems (milliseconds) (80). These
arti!cial learning behaviors were used to stimulate the afferent nerve of a cockroach by placing
the device onto the animal. Using this approach, leg muscle movement was arti!cially controlled
in response to external pressures (Figure 4c,d). This seamless integration of sensory detection and
stimulation has the potential to enable prosthetic devices that augment or replace functionality in
living systems.
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Figure 4
(a) IR (top) and UV light (bottom)–triggered current amplitudes of an organic nanowire synaptic transistor
with the International Morse code of “hello universe.” Panel a adapted with permission from Reference 104;
copyright The Authors, some rights reserved; exclusive licensee American Association for the Advancement
of Science (CC BY-NC 4.0). (b) Design of a bioinspired afferent nerve. (c) Photographs of the arti!cial
afferent nerve patched onto the animal’s back and the electrodes on a detached cockroach leg to detect the
response to external pressure. (d) Measured force as a response from the animal’s leg extension as a function
of applied pressure. Panels b–d adapted with permission from Reference 105. Abbreviation: EPSC, excitatory
postsynaptic current.

4. CLOSING REMARKS AND OUTLOOK
We have discussed materials design strategies and highlighted that in recent years organic
materials have emerged as promising candidates for neuromorphic computing applications. In
addition to realizing high performance in ANN accelerators, organic semiconductors have been
shown to be biocompatible, which is attractive for machine-body interfacing applications, and
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offer some competitive advantages compared to currently used inorganic materials, owing to
their chemical tunability. We highlighted general design strategies to address the remaining
challenges facing organic neuromorphic devices for high-performance neuromorphic computing
as well as biointerfacing applications. For high-performance computing, the main challenge lies
in realizing submicrometer-sized devices while retaining favorable performance (programming
linearity, fast switching, low operating current and voltage, low switching energy, high endurance,
low device-to-device variability, etc.) and improving BEOL compliance for large-scale integra-
tion of ANN accelerators with CMOS circuitry. Since these requirements are signi!cantly less
stringent for bio-related applications, we propose biointerfacing as a promising future research
direction for organic neuromorphic devices, owing to their biocompatibility, softness, and tun-
ability by chemical synthesis. For biointerfacing, the devices must be biocompatible to ensure
long-term stability in implantable interfaces and must enable some biological functionality, such
as synaptic plasticity in response to biological signals, e.g., following neurotransmitter release.
The demonstration of biointegrated and high-performance computing devices is envisioned to
revolutionize areas such as healthcare, entertainment, and smart textiles, to name a few, and is a
leap that organic neuromorphic devices are uniquely poised to take in the near future.
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